3.390 \(\int \frac{x^2}{(a+b x^3) (c+d x^3)^{3/2}} \, dx\)

Optimal. Leaf size=77 \[ \frac{2}{3 \sqrt{c+d x^3} (b c-a d)}-\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 (b c-a d)^{3/2}} \]

[Out]

2/(3*(b*c - a*d)*Sqrt[c + d*x^3]) - (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*(b*c - a
*d)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.0660656, antiderivative size = 77, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.167, Rules used = {444, 51, 63, 208} \[ \frac{2}{3 \sqrt{c+d x^3} (b c-a d)}-\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 (b c-a d)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

2/(3*(b*c - a*d)*Sqrt[c + d*x^3]) - (2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*(b*c - a
*d)^(3/2))

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+b x^3\right ) \left (c+d x^3\right )^{3/2}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{(a+b x) (c+d x)^{3/2}} \, dx,x,x^3\right )\\ &=\frac{2}{3 (b c-a d) \sqrt{c+d x^3}}+\frac{b \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 (b c-a d)}\\ &=\frac{2}{3 (b c-a d) \sqrt{c+d x^3}}+\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 d (b c-a d)}\\ &=\frac{2}{3 (b c-a d) \sqrt{c+d x^3}}-\frac{2 \sqrt{b} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 (b c-a d)^{3/2}}\\ \end{align*}

Mathematica [C]  time = 0.0126225, size = 52, normalized size = 0.68 \[ -\frac{2 \, _2F_1\left (-\frac{1}{2},1;\frac{1}{2};\frac{b \left (d x^3+c\right )}{b c-a d}\right )}{3 \sqrt{c+d x^3} (a d-b c)} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/((a + b*x^3)*(c + d*x^3)^(3/2)),x]

[Out]

(-2*Hypergeometric2F1[-1/2, 1, 1/2, (b*(c + d*x^3))/(b*c - a*d)])/(3*(-(b*c) + a*d)*Sqrt[c + d*x^3])

________________________________________________________________________________________

Maple [C]  time = 0.005, size = 463, normalized size = 6. \begin{align*} -{\frac{2}{3\,ad-3\,bc}{\frac{1}{\sqrt{ \left ({x}^{3}+{\frac{c}{d}} \right ) d}}}}-{\frac{{\frac{i}{3}}b\sqrt{2}}{{d}^{2}}\sum _{{\it \_alpha}={\it RootOf} \left ( b{{\it \_Z}}^{3}+a \right ) }{\frac{1}{ \left ( -ad+bc \right ) \left ( ad-bc \right ) }\sqrt [3]{-{d}^{2}c}\sqrt{{{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( -i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}\sqrt{{d \left ( x-{\frac{1}{d}\sqrt [3]{-{d}^{2}c}} \right ) \left ( -3\,\sqrt [3]{-{d}^{2}c}+i\sqrt{3}\sqrt [3]{-{d}^{2}c} \right ) ^{-1}}}\sqrt{{-{\frac{i}{2}}d \left ( 2\,x+{\frac{1}{d} \left ( i\sqrt{3}\sqrt [3]{-{d}^{2}c}+\sqrt [3]{-{d}^{2}c} \right ) } \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}} \left ( i\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,\sqrt{3}d-i\sqrt{3} \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}+2\,{{\it \_alpha}}^{2}{d}^{2}-\sqrt [3]{-{d}^{2}c}{\it \_alpha}\,d- \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}} \right ){\it EllipticPi} \left ({\frac{\sqrt{3}}{3}\sqrt{{i\sqrt{3}d \left ( x+{\frac{1}{2\,d}\sqrt [3]{-{d}^{2}c}}-{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ){\frac{1}{\sqrt [3]{-{d}^{2}c}}}}}},{\frac{b}{2\,d \left ( ad-bc \right ) } \left ( 2\,i\sqrt [3]{-{d}^{2}c}\sqrt{3}{{\it \_alpha}}^{2}d-i \left ( -{d}^{2}c \right ) ^{{\frac{2}{3}}}\sqrt{3}{\it \_alpha}+i\sqrt{3}cd-3\, \left ( -{d}^{2}c \right ) ^{2/3}{\it \_alpha}-3\,cd \right ) },\sqrt{{\frac{i\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c} \left ( -{\frac{3}{2\,d}\sqrt [3]{-{d}^{2}c}}+{\frac{{\frac{i}{2}}\sqrt{3}}{d}\sqrt [3]{-{d}^{2}c}} \right ) ^{-1}}} \right ){\frac{1}{\sqrt{d{x}^{3}+c}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^3+a)/(d*x^3+c)^(3/2),x)

[Out]

-2/3/(a*d-b*c)/((x^3+1/d*c)*d)^(1/2)-1/3*I/d^2*b*2^(1/2)*sum(1/(-a*d+b*c)/(a*d-b*c)*(-d^2*c)^(1/3)*(1/2*I*d*(2
*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c
)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c
)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^
2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)
^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2
)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(
1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.82387, size = 494, normalized size = 6.42 \begin{align*} \left [-\frac{{\left (d x^{3} + c\right )} \sqrt{\frac{b}{b c - a d}} \log \left (\frac{b d x^{3} + 2 \, b c - a d + 2 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{\frac{b}{b c - a d}}}{b x^{3} + a}\right ) - 2 \, \sqrt{d x^{3} + c}}{3 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} + b c^{2} - a c d\right )}}, -\frac{2 \,{\left ({\left (d x^{3} + c\right )} \sqrt{-\frac{b}{b c - a d}} \arctan \left (-\frac{\sqrt{d x^{3} + c}{\left (b c - a d\right )} \sqrt{-\frac{b}{b c - a d}}}{b d x^{3} + b c}\right ) - \sqrt{d x^{3} + c}\right )}}{3 \,{\left ({\left (b c d - a d^{2}\right )} x^{3} + b c^{2} - a c d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="fricas")

[Out]

[-1/3*((d*x^3 + c)*sqrt(b/(b*c - a*d))*log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c
- a*d)))/(b*x^3 + a)) - 2*sqrt(d*x^3 + c))/((b*c*d - a*d^2)*x^3 + b*c^2 - a*c*d), -2/3*((d*x^3 + c)*sqrt(-b/(b
*c - a*d))*arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) - sqrt(d*x^3 + c))/((b*c*
d - a*d^2)*x^3 + b*c^2 - a*c*d)]

________________________________________________________________________________________

Sympy [A]  time = 16.4193, size = 66, normalized size = 0.86 \begin{align*} - \frac{2}{3 \sqrt{c + d x^{3}} \left (a d - b c\right )} - \frac{2 \operatorname{atan}{\left (\frac{\sqrt{c + d x^{3}}}{\sqrt{\frac{a d - b c}{b}}} \right )}}{3 \sqrt{\frac{a d - b c}{b}} \left (a d - b c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**3+a)/(d*x**3+c)**(3/2),x)

[Out]

-2/(3*sqrt(c + d*x**3)*(a*d - b*c)) - 2*atan(sqrt(c + d*x**3)/sqrt((a*d - b*c)/b))/(3*sqrt((a*d - b*c)/b)*(a*d
 - b*c))

________________________________________________________________________________________

Giac [A]  time = 1.11195, size = 99, normalized size = 1.29 \begin{align*} \frac{2 \, b \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{3 \, \sqrt{-b^{2} c + a b d}{\left (b c - a d\right )}} + \frac{2}{3 \, \sqrt{d x^{3} + c}{\left (b c - a d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)/(d*x^3+c)^(3/2),x, algorithm="giac")

[Out]

2/3*b*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/(sqrt(-b^2*c + a*b*d)*(b*c - a*d)) + 2/3/(sqrt(d*x^3 + c)
*(b*c - a*d))